Part level transfer regularization for enhancing exemplar SVMs

نویسندگان

  • Yusuf Aytar
  • Andrew Zisserman
چکیده

Exemplar SVMs (E-SVMs, Malisiewicz et al., ICCV 2011), where an SVM is trained with only a single positive sample, have found applications in the areas of object detection and content-based image retrieval (CBIR), amongst others. In this paper we introduce a method of part based transfer regularization that boosts the performance of E-SVMs, with a negligible additional cost. This enhanced E-SVM (EE-SVM) improves the generalization ability of E-SVMs by softly forcing it to be constructed from existing classifier parts cropped from previously learned classifiers. In CBIR applications, where the aim is to retrieve instances of the same object class in a similar pose, the EE-SVM is able to tolerate increased levels of intra-class variation, including occlusions and truncations, over E-SVM, and thereby increases precision and recall. In addition to transferring parts, we introduce a method for transferring the statistics between the parts and also show that there is an equivalence between transfer regularization and feature augmentation for this problem and others, with the consequence that the new objective function can be optimized using standard libraries. EE-SVM is evaluated both quantitatively and qualitatively on the PASCAL VOC 2007 and ImageNet datasets for pose specific object retrieval. It achieves a significant performance improvement over E-SVMs, with greater suppression of negative detections and increased recall, whilst maintaining the same ease of training and testing. © 2015 Elsevier Inc. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enhancing Exemplar SVMs using Part Level Transfer Regularization

Content based image retrieval (CBIR), the problem of searching digital images in large databases according to their visual content, is a well established research area in computer vision. In this work we are particularly interested in retrieving subwindows of images which are similar to the given query image, i.e. the goal is detection rather than image level classification. The notion of simil...

متن کامل

Exemplar-based Representations for Object Detection, Association and Beyond

Recognizing and reasoning about the objects found in an image is one of the key problems in computer vision. This thesis is based on the idea that in order to understand a novel object, it is often not enough to recognize the object category it belongs to (i.e., answering “What is this?”). We argue that a more meaningful interpretation can be obtained by linking the input object with a similar ...

متن کامل

Exemplar-SVMs for Action Recognition

This goal of this paper is to introduce a method for action recognition that significantly reduces the labeling process. The method involves training a separate linear support vector machine (SVM) classifier for each selected exemplar and combining the scores to form mid-level features. Our approach is trained and tested on the UCF Sports Action data set. The accuracies achieved by the combined...

متن کامل

Multi-Task Multi-Sample Learning

In the exemplar SVM (E-SVM) approach of Malisiewicz et al., ICCV 2011, an ensemble of SVMs is learnt, with each SVM trained independently using only a single positive sample and all negative samples for the class. In this paper we develop a multi-sample learning (MSL) model which enables joint regularization of the E-SVMs without any additional cost over the original ensemble learning. The adva...

متن کامل

One-class SVM regularization path and comparison with alpha seeding

One-class support vector machines (1-SVMs) estimate the level set of the underlying density observed data. Aside the kernel selection issue, one difficulty concerns the choice of the ’level’ parameter. In this paper, following the work by Hastie et. al (2004), we derive the entire regularization path for ν-1-SVMs. Since this regularization path is efficient for building different level sets est...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Computer Vision and Image Understanding

دوره 138  شماره 

صفحات  -

تاریخ انتشار 2015